Lieb-thirring Inequality for the Aharonov-bohm Hamiltonian and Eigenvalue Estimates

نویسنده

  • M. MELGAARD
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Negative Discrete Spectrum of Perturbed Multivortex Aharonov-bohm Hamiltonians

The diamagnetic inequality is established for the Schrödinger operator H 0 in L (R), d = 2, 3, describing a particle moving in a magnetic field generated by finitely or infinitely many Aharonov-Bohm solenoids located at the points of a discrete set in R, e.g., a lattice. This fact is used to prove the Lieb-Thirring inequality as well as CLR-type eigenvalue estimates for the perturbed Schrödinge...

متن کامل

Spectral Properties of Perturbed Multivortex Aharonov-bohm Hamiltonians

The diamagnetic inequality is established for the Schrödinger operator H 0 in L (R), d = 2, 3, describing a particle moving in a magnetic field generated by finitely or infinitely many Aharonov-Bohm solenoids located at the points of a discrete set in R, e.g., a lattice. This fact is used to prove the Lieb-Thirring inequality as well as CLR-type eigenvalue estimates for the perturbed Schrödinge...

متن کامل

Remarks on Eigenvalue Estimates and Semigroup Domination

We present an overview over recent results concerning semi-classical spectral estimates for magnetic Schrödinger operators. We discuss how the constants in magnetic and non-magnetic eigenvalue bounds are related and we prove, in an abstract setting, that any non-magnetic Lieb-Thirring-type inequality implies a magnetic Lieb-Thirring-type inequality with possibly a larger constant.

متن کامل

The Friedrichs Extension of the Aharonov-bohm Hamiltonian on a Disc

We show that the Aharonov-Bohm Hamiltonian considered on a disc has a four-parameter family of self-adjoint extensions. Among the infinitely many self-adjoint extensions, we determine to which parameters the Friedrichs extension HF corresponds and its lowest eigenvalue is found. Moreover, we note that the diamagnetic inequality holds for HF .

متن کامل

A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator

We give a proof of the Lieb-Thirring inequality in the critical case d = 1, γ = 1/2, which yields the best possible constant.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002